Test: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
< | <math>E=mc^2</math> | ||
<math>2 + 2 = 4</math> | |||
</ | |||
<math>x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}</math> | |||
<math>a^2 + b^2 = c^2</math> | |||
<math>e^{i\pi} + 1 = 0</math> | |||
<math> | <math>\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}</math> | ||
<math> 2 | <math>\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}</math> | ||
<math>\begin{pmatrix} | |||
\begin{pmatrix} | |||
1 & 2 \\ | 1 & 2 \\ | ||
3 & 4 | 3 & 4 | ||
\end{pmatrix} | \end{pmatrix}</math> | ||
\frac{d}{dx} \left( x^2 \right) = 2x | |||
(x + y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k | <math>\frac{d}{dx} \left( x^2 \right) = 2x</math> | ||
\lim_{x \to 0} \frac{\sin x}{x} = 1 | |||
<math>(x + y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k</math> | |||
<math>\lim_{x \to 0} \frac{\sin x}{x} = 1</math> |
Latest revision as of 21:47, 17 October 2024
[math]\displaystyle{ E=mc^2 }[/math]
[math]\displaystyle{ 2 + 2 = 4 }[/math]
[math]\displaystyle{ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} }[/math]
[math]\displaystyle{ a^2 + b^2 = c^2 }[/math]
[math]\displaystyle{ e^{i\pi} + 1 = 0 }[/math]
[math]\displaystyle{ \int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2} }[/math]
[math]\displaystyle{ \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} }[/math]
[math]\displaystyle{ \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} }[/math]
[math]\displaystyle{ \frac{d}{dx} \left( x^2 \right) = 2x }[/math]
[math]\displaystyle{ (x + y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k }[/math]
[math]\displaystyle{ \lim_{x \to 0} \frac{\sin x}{x} = 1 }[/math]