Test: Difference between revisions

From 清冽之泉
Jump to navigation Jump to search
No edit summary
No edit summary
Tag: Manual revert
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
<pre>
<math>E=mc^2</math>
王天霸 你好 你好 你不好 无知
 
什么 矢 不知 明明 油费
<math>2 + 2 = 4</math>
</pre>
 
<math>x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}</math>
 
<math>a^2 + b^2 = c^2</math>
 
<math>e^{i\pi} + 1 = 0</math>
 
<math>\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}</math>
 
<math>\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}</math>
 
<math>\begin{pmatrix}
1 & 2 \\
3 & 4
\end{pmatrix}</math>
 
<math>\frac{d}{dx} \left( x^2 \right) = 2x</math>
 
<math>(x + y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k</math>
 
<math>\lim_{x \to 0} \frac{\sin x}{x} = 1</math>

Revision as of 15:07, 19 November 2024

[math]\displaystyle{ E=mc^2 }[/math]

[math]\displaystyle{ 2 + 2 = 4 }[/math]

[math]\displaystyle{ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} }[/math]

[math]\displaystyle{ a^2 + b^2 = c^2 }[/math]

[math]\displaystyle{ e^{i\pi} + 1 = 0 }[/math]

[math]\displaystyle{ \int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2} }[/math]

[math]\displaystyle{ \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} }[/math]

[math]\displaystyle{ \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} }[/math]

[math]\displaystyle{ \frac{d}{dx} \left( x^2 \right) = 2x }[/math]

[math]\displaystyle{ (x + y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k }[/math]

[math]\displaystyle{ \lim_{x \to 0} \frac{\sin x}{x} = 1 }[/math]