Test: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 11: | Line 11: | ||
<math> 2 + 2 = 4 </math> | <math> 2 + 2 = 4 </math> | ||
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} | |||
a^2 + b^2 = c^2 | |||
e^{i\pi} + 1 = 0 | |||
\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2} | |||
\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} | |||
\begin{pmatrix} | |||
1 & 2 \\ | |||
3 & 4 | |||
\end{pmatrix} | |||
\frac{d}{dx} \left( x^2 \right) = 2x | |||
(x + y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k | |||
\lim_{x \to 0} \frac{\sin x}{x} = 1 |
Revision as of 21:37, 17 October 2024
王天霸 你好 你好 你不好 无知 什么 矢 不知 明明 油费
有 302 不
有但是快得如流星
[math]\displaystyle{ E=mc^2 }[/math]
[math]\displaystyle{ 2 + 2 = 4 }[/math]
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} a^2 + b^2 = c^2 e^{i\pi} + 1 = 0 \int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \frac{d}{dx} \left( x^2 \right) = 2x (x + y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k \lim_{x \to 0} \frac{\sin x}{x} = 1