Test: Difference between revisions

From 清冽之泉
Jump to navigation Jump to search
No edit summary
No edit summary
Tag: Reverted
Line 23: Line 23:


<math>\lim_{x \to 0} \frac{\sin x}{x} = 1</math>
<math>\lim_{x \to 0} \frac{\sin x}{x} = 1</math>
<iframe src="https://player.bilibili.com/player.html?bvid=BV1rsSoYoEEX" width="1920" height="1080" allowfullscreen></iframe>

Revision as of 15:07, 19 November 2024

[math]\displaystyle{ E=mc^2 }[/math]

[math]\displaystyle{ 2 + 2 = 4 }[/math]

[math]\displaystyle{ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} }[/math]

[math]\displaystyle{ a^2 + b^2 = c^2 }[/math]

[math]\displaystyle{ e^{i\pi} + 1 = 0 }[/math]

[math]\displaystyle{ \int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2} }[/math]

[math]\displaystyle{ \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} }[/math]

[math]\displaystyle{ \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} }[/math]

[math]\displaystyle{ \frac{d}{dx} \left( x^2 \right) = 2x }[/math]

[math]\displaystyle{ (x + y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k }[/math]

[math]\displaystyle{ \lim_{x \to 0} \frac{\sin x}{x} = 1 }[/math]


<iframe src="https://player.bilibili.com/player.html?bvid=BV1rsSoYoEEX" width="1920" height="1080" allowfullscreen></iframe>